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Abstract

We show some properties of Reinhardt Cardinals and I0 models
and their interaction with constructibility and inner models (particu-
larly on constructible or inner models of ZF that are also Reinhardt/I0
models), and also definable embeddings. We also examine the general
intersection between the properties and results of Reinhardt and I0,
particularly on forcing notions that relate the two.

1 Introduction

This question was primarily inspired from a Discord server, about Large Car-
dinal Charts not showing Reinhardt cardinals. There, an anonymous user
commented that the said chart only makes sense in ZFC, as Reinhardt is not
consistent with ZFC, but the Rank-into-Rank axioms are consistent with
ZFC. Another user commented on the possible implication of Reinhardt im-
plies I0, particularly for inner models of ZF. This paper is largely inspired
from the answer to this question. The ”inner models of ZF part of the ques-
tion is answered first, along with Reinhardt being stronger than I0 and on
its implications and results.
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Another inspiration is from Goldberg’s paper on Reinhardt cardinals and
their connection with inner models.[6] Many of the theorems, especially The-
orem 2.2, were meant to be somewhat tangential to the original problem
(that Reinhardt gives I0 in an inner model, a.k.a. An inner model of ZF
that also contains a Reinhardt cardinal can have an I0 model constructed
from/inside it), but are expanded and critiqued on.

2 Reinhardt Cardinals

A Reinhardt Cardinal is a cardinal that is the critical point of an embedding
from the set-theoretic universe V to itself. Kunen’s Inconsistency Theorem
implies that Reinhardt Cardinals are inconsistent with ZFC.

Theorem 2.1. If there is a class of weakly Reinhardt cardinals, then
there is an constructible model with a class of Reinhardt cardinals. (ZF)1

Proof. Let C be a class of weakly Reinhardt cardinals2. Construct an structure-
preserving non-trivial elementary embedding jR from C that embeds into
L(V ). Set the weakly Reinhardt cardinals as the critical points κ of such
embeddings.3 Take both classes in Theorem 2.1 to be class functions, but
with ”function” replaced by elementary embeddings; take the defining for-
mulae of the classes Φ to be functions (injections) of sets (not sets of subsets;
ZFC is first order) in V .

Open Question 1. Can Theorem 2.1 be extended to Reinhardt cardinals
or even stronger instead of weakly Reinhardt cardinals?

The embedding from above has a critical point κ; κ a Reinhardt. Note
that such embedding jR is of the form M |= ϕ(a1, ..., an) ⇐⇒ N |=
ϕ(L(a1), ..., L(an)), or M |= ϕ(a1, ..., an) ⇐⇒ N |= ((X,∈) |= ϕ(a1, ..., an))

4

Also, throughout this paper, this embedding jR will extensively be used to
prove properties of constructible and definable models of ZF + Reinhardt.

1I have removed ”proper” from ”proper class” in Goldberg’s original formulation of the
theorem because ZF(C) does not allow a strict definition of a formal class.

2As given by Corazza.
3This embedding also witnesses ”regular” Reinhardt cardinals, along with a ”shift-

back” of levels in V from λ+ 1.
4X is a class.
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(Definition 2.1)

Lemma 2.1.1. If there is a proper class of weakly Reinhardt cardinals,
then there is an constructible model with a proper class of Reinhardt cardi-
nals. (NBG, MK)

This is an immediate result of the definition of proper class in NBG and
MK.

Note that construction of an embedding jR would be less annoying in MK
than in NBG or ZF; MK is second-order. Then one can construct embed-
dings of sets of sets or classes of classes, particularly uncountable or inac-
cessible classes of classes, making it so that instead of individual functions
or embeddings of classes (resulting in schemas), one can ”stream-line” this.5

Therefore, we now work in MK, without Choice.

Lemma 2.2. jR ”enforces” upon formulae or models (say, of the form
ϕ(a1, ..., an)) definability/constructability. That is, jR : M → L(M).

Theorem 2.3. The existence of an elementary embedding jR between
Reinhardt Models is equivalent to there is an elementary embedding L(V ) ≺
L(V ).

A Reinhardt cardinal in-between a weakly Reinhardt and a ”regular”
Reinhardt is nescessary for the proof, particularly to show that for some α
and β, there is an elementary embedding Lα ≺ Lβ with a crit point less than
α. This is to make sure the proof does not get ”restrained” by specific levels
of V or L. Such a cardinal will also be as strong as regular Reinhardt.

Definition 2.4. A moderately Reinhardt cardinal is the critical
point κ of an elementary embedding j : Vk+n → Vk+m, n ≤ m, such that
Vn ⪯ Vm for k < m.

Proof. We prove Theorem 2.3 for moderate Reinhardts first. Let MMR be
a model of MK that satisfies moderate Reinhardt-ness. Let jR : MMR⋆m →
MMR⋆m1 , m and m1 in this context representing the level m of V that the

5This is the advantage with most second-order theories. A ”second-order” ZFC could
be used for the rest of this paper.
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embedding in the moderately Reinhardt cardinal maps to. Lemma 2.2 is used
to show that the embedding jR enforces upon MMR⋆m to become contructible
as the form MMR⋆m1 . Therefore, MMR⋆m1 is constructible and of the form
LMR⋆m1 . MMR⋆m−1 embeds into MMR⋆m, therefore making it constructible
and of the form LMR⋆m. We could keep going, recursively ”pushing down”
the m to keep the constructability aspect of the models. Specifically, start at
the base m, and name this level 0 of the ”constructible push-down”. Level
η of the push-down is m − η for any ordinal η. Requiring that V0, the
maximum ”push-down” be constructible is not nescessary. Therefore, if we
”shift” the m’s, it is possible for the statement α and β, there is an elementary
embedding Lα ≺ Lβ with a crit point less than α to be satisfied. This case
can be generalized to Reinhardt cardinals in general in that the non-levels of
the cardinals could be treated as a special case of the ”push-down hierarchy”;
simply set k = m = 0.

As a side remark, the ”push-down” method can be thought of as essen-
tially a reverse reflection; we go bottom-up instead of top-bottom.

Open Question 2. Can this system of proof be used for other Large
Cardinals?

Open Question 3. Where do moderate Reinhardt cardinals fall on the
Large Cardinal Hierarchy?

Moderately Reinhardt Cardinals are ammunition for another paper.

2.1 Reinhardt and Inner Models

Theorem 2.5. If there is a proper class of weakly Reinhardt cardinals, then
there is a inner model with a proper class of Reinhardt cardinals.

V ̸= L per the Jensen covering lemma.6 The ordinals for the proper
class of weakly Reinhardt cardinals can be defined ”as usual”, only with the
hierarchy going up to weak Reinhardt-ness (same thing applies for classes of
Reinhardt cardinals), and with cardinals being defined as an ordinal number

6Because there is an embedding from L to L, at least when constructed from Reinhardt
Models.[8] Ord in L is simply the ordinals in V .
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that is not in bijection with a smaller cardinal (Goldstein). Jensen also im-
plies that for all ordinals α, |P (α) ∩ L| = |α|, along with 0 sharp. Let L(j)
represent the class of constructible sets relative7 to an elementary embedding
L → L.

There are instances in which L is not inner without AC. We work in KP
set theory for this proof. L is constructed in the usual way, but most ordi-
nals in L are not admissible in KP because the ”def” relation is ΣKP

1 . As
an additional remark, absoluteness of L in an inner model W implies V =
L, which implies GCH, which implies AC. We can avoid V = L by ”loos-
ening” the notion of absoluteness in def; X or ϕ could be more ”variable”.
This also protects κ being measurable, and therefore L being an inner model.
Therefore, def is newly defined as Defυ(X) = {{∀y : y ∈ X and (X,∈) |=
ϕ(z1, ..., zn)} | ϕ is first order and z1, ..., zn, y ∈ X}.8,9 (Defintion 2.2.)

Lυ10 constructed fromDefυ(X) still satisfies all the axioms of ZF, but not
AC. Lυ is still transitive, but with the additional component of y, therefore
extensionality. Foundation is trivial. Comprehension goes like this: show
that ∀z1, ..., zn ∈ Lυ({y ∈ X : ϕ(y, z1, ..., zn)}X ∈ Lυ).11 Proceed via reflec-
tion in Lυ. Pairing, Union, Replacement, and Infinity are all trivial. Power
Set is of the form ∀z1, ..., zn ∈ Lυ({y ∈ X : ϕ(y, z1, ..., zn) X ∈ Lυ}) ⇐⇒
∀z1, ..., zn ∈ Lυ ∃y ∀z[z ∈ y ⇐⇒ ∀w ∈ (z1, ..., zn), w ∈ z =⇒ w ∈
ϕ(z1, ..., zn)].

Proof. (MK) Denote CwR for the proper class of weak Reinhardts, and CR

for the proper class of weak Reinhardts. Use jR from Definition 2.1.12 Let
jR : CwR → CR, and then set the critical points κ of jR as weak Reinhardt,
while it still witnessing regular Reinhardt cardinals. Like in the proof of
Theorem 2.1, take both classes to be defined in terms of subsets of jR.

13 Defυ

is Π1, therefore most ordinals in CwR are admissible into CR. Both models

7”Relative” means constructible in the sense of an embedding similar to in Definition
2.1.

8y is defined separately to ”indivdualize” it and the classes.
9”υ” represents variability. We also do this in order to make Defυ a non Σ1-formula.

10Lυ is L but from Defυ.
11Inspired from Kunen (1980). This is also a schema; there is a separate statement for

each ϕ.
12First form of jR; def as in Definition 2.2.
13As in, an ordered pair of sets from CwR and CR.
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are transitive. Also, a ”loosened”, but still strong notion of absoluteness
avoids V = L. If not, this would contradict the Jensen covering lemma and
absoluteness of L in an inner model W.
(ZF) Overall the same, but a schema of functions/formulae would be needed
in place of embeddings.

3 Rank-into-Rank Cardinals

3.1 Introduction to this section

This paper grew out of the following question:

(Solved) Question 4. Reinhardt gives I0 in an inner model of ZF.

With ”gives” meaning that another model containing I0 can be con-
structed from the Reinhardt-ZF-inner model. Essentially, given an inner
model of ZF containing Reinhardt, a model that is inner and is also I0 can
be constructed from said model.

The original proof was of forcing, namely a forcing notion called ”Skibidi”,
which was inspired from shooting a fast club. Essentially, for S a stationary
set ⊆ ω1, P is the set of closed and constructible sequences, and HOD se-
quences from S in MR. Then G will consist of nontrivial embeddings, which
satisfy the above P . The construction of the new embedding makes Skibidi
forcing redundant, but would be very useful in first-order theories.

In particular, both Reinhardt and I0 share that (ZF) models containing
both Reinhardt and I0, respectively, can be made constructible (from Skibidi
forcing), and also an embedding of the form jR (Theorem 3.1). They also
both involve critical points, and nontrivial elementary embeddings.

First, we prove some constructability theorems. Next, those theorems
and embeddings will be related to Reinhardt. Then, the notion of Skibidi
forcing will be explored, along with the above theorems.
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3.2 Inner Models; Constructability

Lemma 3.2. A constructible model of ZF containing an I0 cardinal exists.

Proof. Rather easy. Under I0, transitive proper class obtained by starting
with Vλ+1 and forming the constructible hierarchy over Vλ+1 in the usual
fashion i.e. usual construction of the constructible hierarchy.

Remark. An embedding jR as in Definition 2.1 might need not be changed
much to suit I0, but only that its critical point < λ. (jI0) We could also
use ultrapowers and model extenders, inspired from Gabriel Goldberg’s other
paper on Rank-to-Rank embeddings.[5] Ultrapowers and model extenders are
beneficial in that I0 is much less dependent on embeddings and crit. points
and much more on ultrapowers; they can even be wholly formulated via ul-
trapowers.

Let Uα be an model-specific ultrafilter over a classXα over the said model.
Define a function fβ,α from Xβ to Xα. We still use jI0. Also, let λ be an
ordinal in Xα. Denote E = ⟨Uα, Xα, fb,a : a ⊆ b ∈ [λ]<ω⟩, which is an Xα-
extender.14

Theorem 3.3. An inner model containing I0 exists.

Proof Sketch. We work in ZF. A second-order formulation of set theory is
not necessary,and we could just use extenders (Ult(M,E), M is a model, and
E is an M-extender, then Ult(M,E) is a def. inner model of M) or jI0. Such
a model of I0 is already transitive; we just need to prove that it contains all
ordinals, which can again be done using extenders.

As a somewhat immediate corollary, the addition of I0 to certain classes
can induce inner models. For example, take the class Vλ (or Vλ+1). Then,
we can construct an embedding from it to a constructible version, and from
there we can use an extender Ult((L(M),E)), in which E is an M-extender
(class extender), and E = ⟨Uλ, Vλ, fλ,L(λ) : L(λ) ⊆ L(λ) ∈ [Λ]<ω⟩.15

Open Question 5. Can the addition of I0 to classes induce inner models
in all classes?

14This will be repeatedly referenced as an M-extender, given that the respective model-
specific ultrafilter is over a class M.

15The modified Def relation is not nescessary for rank-into-rank.
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3.2.1 Axiom of Choice

Theorem 3.4. The Axiom of Choice is not inconsistent with I0.

Proof Sketch. If it were, then, particularly in ZF, an infinite schema of func-
tions (corresponding to the rank-into-rank embedding) would not be able
to be constructed and then well ordered by their rank in the constructible
hierarchy.

Corollary 3.5. I0 implies AC.

Proof. Take the contrapositive, ¬AC implies ¬I0. The non-well-ordering of
the ultrafilter U (and many other objects, including functions, etc.) implies
that an extender defined from embeddings, in which will simply be called an
embedding extender, and is defined as E = {Ea : a ∈ [λ]<ω} and for a ∈
[λ]<ω, X ⊆ [κ]<ω : X ∈ Ea ⇐⇒ a ∈ j(X), given κ ≤ λ ≤ j(κ), in which
Ea is an ultrafilter of the form X ∈ L(Vλ+1) ∩ {k : L(Vλ+1)} and a part of
Dn ∈ Va.

Said embedding extender which lifts the embedding from Vα → Vα to
Lα+1 → Lα+1 cannot exist, because given a ∈ Dn, (to separate a from the
ultrafilters Ea proper) a would have to be the least element of Dn. If not,
then a ∈ Dn cannot injectively correspond to a single rank of Va.

3.3 Ultrafilters of I0

3.3.1 Los’s Theorem

Los’s Theorem implies that if MI0 is a model containing I0, a class Xα over
said model, an ultrafilter U over Xα, and an assignment of i ∈ I to Mi, in
which M is a λ-structure16, then for ΠUM•, given a1, .., an ∈ Πi∈IM, and
for a λ-function f 17, ΠUM• |= f(a1, ..., an), in which a1, .., an ∈ U ⇐⇒ {i ∈
I : Mi |= f [a1, ..., an] (relativized to an i ∈ I)} ∈ U .

16λ is an ordinal from the class.
17Similar to the one used to define E in p. 7.
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4 Interaction of Reinhardt and Rank-into-Rank,

particularly I0

A motivation for this is that they both ”edge” consistency, and show very
elegant properties for constructibility together. With Reinhardt, this shows
up as results regarding embeddings, and with I0, this shows up as results
regarding ultrafilters and ultraproducts. For this section, primarily MK will
be used.

4.1 Skibidi Forcing; original proof of Question 4

Here is the unabridged proof of Question 4.

Proof. Let MR be a model of ZF containing a Reinhardt cardinal. It must
be shown that I0 be can ”contained” or proven in (or using) the model, in
that a constructible version of the embedding j : V → V exists in MR. Con-
struct a forcing notion based off of shooting a fast club; more specifically for
S stationary in ⊆ ω1, P is the set of closed and constructible sequences, and
HOD sequences from S in MR. Then G will consist of nontrivial embeddings,
which satisfy the above P. Clearly p |= Def(u1, .., un), especially for embed-
dings. Therefore, I0 holds in MR[G], showing the existence of a constructible
version of j : V → V in a model which satisfies Reinhardt-ness.

Additional Remarks:

1. A condition p ∈ P if and only if p ∈ L(S) ∩ MR and p is a closed
subset of S.

2. The forcing poset (Skibidi) forces constructibility; take p < q iff p ⊆ q.
(Both are sequences of elements, which is very important in ZF) Let
p ∈ P and (it) assume[s] p |= ṡ to be constructible, s a sequence or
embedding.

3. S in condition 1 is allowed to be non-ω1.

Skibidi Forcing can be used to force constructibility for models without
using MK or any other second-order theory, because we do not have to add
embeddings ”directly” on the model; names for ”functions” (or embeddings)
of functions, or first-order sequences that add on to the Generic Set of the

9



model will be used instead. As a Reinhardt → I0 relation is inherently a rela-
tion regarding constructibility (as one deals with embeddings of constructible
models), Skibidi forcings can be very useful in order to show relations be-
tween Reinhardts and Rank-into-Rank, and axioms that involve constructible
models or classes, such as an embedding from L to L.

Theorem 4.1. Skbidi Forcing adds an embedding from L to L.

Lemma 4.1.1. There is a generic set which satisfies the existence of at
least one isomorphism between two constructible sets.

Note that for Theorem 4.1 to work, modify (1) such that MR is simply
M , or L(M)18.

Proof Sketch. Represent isomorphisms between two constructible sets in G
as I = {p ∈ P | p : S ∈ L → S1 ∈ L}, and I ∈ G, in which p is a function.

Lemma 4.1.2. Such isomorphisms comprise an embedding.

Proof. Take p and q from the forcing poset. Define Ip0 = {p0 ∈ P | p0 : C ∈
L → C1 ∈ L}, Ip1 = {p1 ∈ P | p1 : C ∈ L → C1 ∈ L}, with C representing
classes of sets, and Ip = {p ∈ P | p : C ∈ L → C1 ∈ L}. Then p is an
embedding from C ∈ L to C1 ∈ L.

Lemma 4.1.3. Propositions 4.1.1 and 4.1.2 apply to all sets and classes
in L.19

Proof Sketch. Suppose that there exists a set or class in which 4.1.1 or 4.1.2
does not apply. If 4.1.1 does not apply, this is trivial. If 4.1.2 does not apply,
then let p1 < p; p ⊂ p1, and proceed via recursion.

Lemma 4.1.4. An embedding from L to L holds in MR[G].

18L(MI0) too.
19In order to make Theorem 4.1 a function.
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4.2 Some general constructibility/inner model proper-
ties

Theorem 4.2. A constructible model LR implies the existence of a con-
structible model LI0.

Let the order of the elements of the forcing poset be p < q if p ⊂ q.

Lemma 4.2.1. There are generic extensions of LR which satisfy the
existence of an embedding between Reinhardt models and I0 models.

Proof. (Skibidi Forcing) Set S in (1) in 4.1 to be essentially unrestricted
in terms of ordinality. Let G be defined such that for embeddings from V
to V , such sequences ”enforce” the embedding to become constructible (for
L(V ) → L(V )), and then another forcing (we use iterated forcing) to ”push
it” to L(Vλ+1) → L(Vλ+1).

For G, we can basically proceed as how Lemma 4.1.1 goes, but with V
and non-constructible sets, and represent p (functions implied by the original
4.1.1) with isomorphisms between sets of V into L(V ) (such that p : v →
l, v ∈ V and l ∈ L(V )), and to avoid breaking first-order-ness, represent
embeddings as schemata of isomorphisms. V → V becomes l(f) : L(V ) →
L(V ) for a particular f : V → V , and l(f) is the ”constructibly lifted”
version of f . The fact that L(V ) → L(V ) exists comes from Theorem 4.1.
Define P -names for Vα and L(Vα) recursively; order P -names of rank α of
V or L(V ) by their individual rank, i.e., ρ(V̇α) = α, and the same goes for
L(V ).

L(V ) L(V )

V V

l(f)

p

f

p

ω1 is not collapsed under the original Skibidi forcing notion because given
an element p < ω1, then there is an element q so that p < q (slightly
handwave-y). For the generic set Ḣ, let it be constructed using the forcing
notion Q which is LR[G]-generic; Q ∩ E = ∅,∀E ∈ LR[G] implies that r ∈
Q if r ∈ L(S)C (is complement, with rest of universe being the rest of L) ∩
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MR and r is a closed subset of S. We can still force constructibility us-
ing this new notion; let r0 < r1 iff r0 ⊆ r1, with both being sequences.
r |=L̇R,Q

˙̇s is equivalent to r |=L̇R,Q
˙s ∈ G. Also, add another criterion

for admission into Q; r ∈ Q if r : ρ(s ∈ G) → r + 1 : ρ + 1(s ∈ G).

Then, given P -names for L(V ), we have that r ”moves” ˙L(V ) by a rank
(r |=L̇R,Q L̇R ρ(L(V )) + 1). We can extend this into λ + 1 by recursively
defining r1; r : ρ(s ∈ G) → r + 2 : ρ+ 2(s ∈ G), and rλ : ρ(s ∈ G) → r + n :
ρ + n(s ∈ G), n < λ. Therefore, we have successfully been able to ”push”
L(V ) to L(Vλ+1).

L(Vλ+1) L(Vλ+1)

L(V ) L(V )

r(ḟ)

r

l(f)

r

Open Question 5. What are some uses for Skibidi Forcing on Large
Cardinals and Constructibility besides Reinhardts and I0? Can Skibidi Forc-
ing be applied to study properties about constructibility for, say, other Rank-
into-rank cardinals?
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